
Journal of Applied Mechanics and Technical Physics, Vol. 35, No. 5, 1994 

BUCKLING OF A BAR ON AN ELASTIC BASE 

N. S. Astapov, A. G. Demeshkin, and V. M. Kornev UDC 539.3 

It is noted in [1] that a characteristic feature of the behavior of many structures under the action of compressive loads 
is periodicity of the initial buckling mode in the direction of compression upon loss of stability. However, the f'mal buckling 

mode of such structures often has the form of a clearly defined single buckle or a small number of buckles. Buckling 
localization is due to the existence of a bifurcation point when the load reaches the maximal value or thereafter, at which the 

initial buckling mode bifurcates [1]; after bifurcation the periodic buckling mode is replaced by localized buckling, and this 

often takes place instantaneously. It is noted in [2] that the mechanism of buckling localization may consist of nonlinear 
interaction of the buckling modes with similar wavelengths. Study of the localization of buckling of models of real structures 
shows that the basic laws governing the process are described by the one-dimensional model of the behavior of a bar [1]. It 

is noted in [3] that the mechanism of buckling in a composite structure, in spite of specific peculiarities, is analogous to the 

mechanism of the buckling of a bar in an elastic medium. 
In the present work we study experimentally the buckling of a flexible bar resting on an elastic base. We should point 

out the difficulties that arise in this problem. Thus, the validity of the Euler formula for the critical load of an axially 

compressed bar (1744) was finally confirmed 150 years later by the experiments of Bauschinger (1889), Consider6 (1889), 
Tetmaier (1903), and yon Karman (1910), in which much attention was devoted to the hinged support, central application of 

the compressive load, and the satisfaction of other conditions that are anticipated by the theory. Thanks to the adoption of these 
precautions, the experimental results approached the Euler load with accuracy to 1.5 % [4]. The theoretical study of the problem 

of the buckling of bars resting on several elastic supports was first (1902) performed by Yasinskii [4, 5]. However, in spite 

of the fact that the theory of beams and plates resting on an elastic base is at the present time a very highly developed branch 
of mechanics, the existing computational methods are still far from perfect and do not answer many of the questions advanced 
by practical experience. It is noted in [6] that many of these methods are too complex for practical calculations; the hypotheses 

which are taken as the basis for the formulation of the mathematical models also can not be considered to be without fault. 
In the present work we establish experimentally the possibility of unstable behavior of a bar resting on an elastic base, 

which agrees with the theoretical arguments. In the case of repeated loadings there is noted a reconfiguring of the buckling 
modes, which is associated with the instability of the realization of the buckling process because of the high density of the 

critical load spectrum. 
Experimental Setup and Bar Specimens. Figure 1 shows the specimen loading scheme. The bars 1 were polished 

steel strips of differing thickness h and width b. Either foam rubber or vacuum rubber with stiffnesses c = 0.47 and 11.5 
kg/cm 2, respectively, was used as the elastic base 2, which was bonded to the steel strips. For the measurement of the 

deformation, the specimen was attached to a toolmaker's microscope on the rigid beam 3, which was bonded to the elastic base. 

The load was applied to the specimen symmetrically relative to its ends and was measured by the dynamometer 4 with 
sensitivity 2.7.10 -3 kg. The transverse displacements of the flexible bar were measured with accuracy to 10 -3 ram along its 

entire length for each fixed load. 

The results of the experiments conducted for the nine specimens are presented in the Table, where L is the bar length, 

N is the experimentally obtained number of halfwaves of the deflected bar, P0 is the minimal load at which deflection of the 
bar centerline from a straight line was noted, Ph is the load at which the transverse displacement of the bar centerline reached 
the thickness h of the elastic bar, Pm is the maximal load applied to the specimen, a is the maximal transverse displacement 

of the bar centerlme, corresponding to the maximal load Pro, n is the theoretically obtained number of halfwaves of the 

sinusoid, corresponding to the classical linear theory, Pi is the classical critical buckling load of the bar on the elastic base, 
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TABLE 1 

Spe-] Experiment 

eimen) t..mm~ bar: e o { e h v,~ 
hum/ " ,v behav- . I,. mm 
ber ! ior ~ kg 

1 30 3 V 1,2 2,5 4,6 1,15 3 

2 54 6 A 1,5 2,6 3,1 0,26 5 

3 74 7 A 2,6 4,6 0,9 7 

3 V 0,5 1,1 1,5 1,8 

4 52 2 

4 A 0,5 1,5 2,1 0,8 

I 
4 A 0,56 1,2 1,5 0,9 

5 62 3 

5 A 0,56 1,3 1,5 0,5 

6 80 5 0 0 ,4  1,0 1,4 2,1 3 

7 I00 6 A 0,5 1,3 1,7 0.5 4 

8" 125 7 A 0,6 1,3 1,6 5 

Theory 

hal' v~. kg 
behavior 

P2 = 3,35 V V 

P3 = 2,81 V V 

P4 = 3,58 A A 

P4 = 3,03 V V 

P5 = 2,77 V V 

Po = 2,97 V A 

Po = 2,85 V V 

P7 = 2,77 V V 

PS = 2,92 V V 

PI = 1,35 V V 

P2 = 0,56 V V 

P3 = 0,69 A A 

P4 = 1,05 A A 

P2 = 0,63 V V 

P3 = 0,59 V V 

P4 ffi 0 ,80 A A 

P5 = 1,14 A A 

P3 = 0,57 V V 

P4 = 0,60 V A 

P5 = 0,76 A A 

Pj  = 0,68 V V 

P4 = 0,56 V V 

P5 = 0,60 V A 

eo = o,72 ,x A 
/ '4 = 0,63 V V 

PS = 0,56 V V 

P6 = 0,58 V V 

P7 = 0,67 A A 

P2 = 2,44 V 

P3 = 2,38 A 

P4 = 3,31 A 

P5 = 4,77 A 

when i halfwaves are realized. The fourth column and the last two columns of the Table indicate the experimentally recorded 
and theoretically predicted [7] stable A, unstable V, or indifferent 0 postbuckling behavior of the bar. In the last two columns 

of the Table there are noted the stable and unstable behavior with respect to the i-th mode of the bar-plus-elastic-base system, 

where the calculations were made using the classical (next-to-last column) and nonclassical (last column) models [7]. The dual 
rows for the 4-th, 5-th, and 9-th specimens reflect the results of experiments on the same specimens with repetitive loading. 

The disturbances that were uncontrollable during loading of  the specimens led to differing realizations of  the buckling 

of the bar-plus-elastic-base system. In specimens 1, 2, 3 the elastic base stiffness was c = 11.5 kg/cm 2, in the other specimens 

c = 0.47 kg/cm 2. For specimen 9 we used a steel strip of  thickness h = 0.27 mm and width b = 8 ram, for the other 

specimens h = 0.1 mm and b = 10 nun. In the calculations the value of the elastic modulus of  the steel was taken to be E 
= 2.0.106 kg/cm 2. The stiffness of the elastic base was measured on rubber specimens in which the rubber was not bonded 
to the steel strips. 

Comparison with Theory. The critical loads and the initial periodic buckling modes of an ideal bar of length L that 

is axially compressed by the load P can be determined from the linearized differential equation of  equilibrium of the bar [8] 

Ely~.~ + Py~, + cy = O. 
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Here EI is the bending stiffness; c is the bedding coefficient; the function y(x), 0 < x < l (l is the distance between the ends 

of the deflected bar, Fig. 2) describes the deformed position of the bar [7] and must satisfy the geometric end conditions of 

hinged support: 

y(0) = Y(0 = )~(0) = Y=(0 = 0. 

For the calculation of the critical load we use the expression [8, 9] 
1~ = P . ( n  2 + r/n2), (1) 

where P. = EI(Tr/L) 2 is the Euler critical load for the bar without the elastic base and r = c(L/Tr) 4 is the dimensionless stiffness 

of the elastic base. The theoretical number n (see the Table) of halfwaves of the sinusoid (corresponding to the initial buckling 

of the bar) is determined from the condition 

(n - 1)2n 2 <~ r <~ n2(n + 1) 2. 

Table 1 presents the critical loads Pi, calculated using (1), for the modes with number of halfwaves close to n. The 

theoretical number of halfwaves n is normally less than the experimental number N; for example, for the specimens 4, 5, 6, 

7, 8 the difference is two halfwaves. It is clear that an important role is played by the high density of the values of the critical 

loads (see Table 1) and the multiplicity of the smallest characteristic value (specimens 6, 7, 8, for which the first two critical 

loads nearly coincide). Thus, for the specimen 8 the fourth in magnitude critical load differs from the first critical load by less 

than 20 %. The influence of the end effect and the presence of the inevitable initial irregularities also are significant. For 

example, if for the specimen 5 we take h = 0.107 mm in place of 0.1 mm or for the specimen 9 we take L = 118 mm in place 

of 120 ram, then for the number of halfwaves in both cases n = 2 in place of n = 3. 
We see from Table 1 that for the specimens 1, 2, 3 with base stiffness c = 11.5 kg/cm 2 the theoretical critical load 

is closer to Ph, while for the specimens 4, 5, 6, 7 (c = 0.47 kg/cm 2) this load is closer to P0, i.e., closer to the minimal load 

at which deviation of the bar from a straight line was observed. Thus, we can say that the theoretical n and the experimental 

N numbers of halfwaves are very sensitive to small changes of  the coefficients of the equation and to disturbances in the course 

of the experiment. From this we can conclude that the influence of the initial irregularities is probably greater on the specimens 

with the stiffer rubber. We further note that the very simple model of the elastic base, when only a single bedding coefficient 

is specified, does not describe the shearing that arises in the elastic base [6]. Therefore it is not possible to explain the 

difference between n and N solely by the influence of the initial irregularities. This may be associated with the nonlinearity 

of the properties of the elastic base at comparatively large deflections. 
For the description of the initial postbuckling behavior of the bar we take the expression for the overall potential energy 

of the system in the form [4, 10] 

1 L L ( /  1 L 

and write the Euler equation of this functional 

E I ~ + e I ( ~ + 4 ~ ) ~ . + p ( l + ~ ) ~ + c w  1 - 7 ,  =0. (3) 

We obtain by the perturbation method the relation [7] 

"P~ = P* In2 + r/n2 + ~2( n4 - 3 r ) (a /L )2 /8  l, (4) 

where a is approximately equal to the amplitude of the deflection of the bar. Analyzing (4), we see that the postbuckling 

behavior of the system is stable for n 4 > 3r and unstable for n 4 < 3r. Table 1 also presents the stable and unstable behavior 

of the system with respect to the mode with i half-waves, which is predicted by the formula (4) (see also Figs. 4 and 5 in [7]). 

A schematic graph of the behavior of the systems is shown in Fig. 3, where the Curves 1 and 2, 3 and 4, 5 and 6 correspond 

to the stable, indifferent, and unstable postbuckling behavior; the lines with odd numbers describe the ideal systems, while the 

lines with the even numbers describe the nonideal systems. 
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~f L 

Fig. 1 

For the specimen 1 the buckling with 3 halfwaves was found to be unstable in the experiment (see the fourth column 

of Table I), in complete agreement with the theory. After reaching the maximal load of 4.62 kg, the symmetry of the specimen 
1 broke down and the load decreased to 3.7 kg (Fig. 4); the specimen took the shape shown schematically in Fig. 4, i.e., the 

periodicity of the buckling mode broke down and local buckling appeared. One of the causes of buckling localization is the 

density of the critical load spectrum (see, for example, the relation (2.12) in [7]). Another cause are the shear deformations, 
which can be taken into account in the framework of the approach adopted in [7] with the use of a refined model of the elastic 

base [6] (see the discussion below of the experimental results). 
The mathematical model of the behavior of a bar on an elastic base, in which (2) is taken as the basic relation, has 

some drawbacks. Thus, the overall potential energy (2) of the bar -base  system, when the bar takes the form of a sinusoid with 
n halfwaves and the amplitude a, has the form [7] (with accuracy to quantities of higher order of smallness) 

U = E I ( ~ / L ) 6 L a 4 [ - n  6 + 3n2r] /64 .  

The quantity U n takes positive values for r > n4/3, although the energy of the unbuckled state is equal to zero (w - 0). Thus, 
in this model the overall potential energy of the buckled state of the system may be greater than the energy of the unbuckled 

state, and therefore the bar will not buckle. This drawback is not present in the nonclassical model of [7], in which the last 
term of the formula (2), accounting more precisely for the work of the elastic base, is written in the form 

/. w 

0 0 

For the nonclassical model of [7] the potential energy 

(5) 

U = E I Q r / L ) 6 L a 4 [ - n  6 - 4n2r] /64 ,  

i.e., the energy of the buckled state for any n and r is always less than the energy of the unbuckled state and, consequently, 
the rectilinear bar equilibrium mode is unstable. For the load-deflection relation in this model we have 

P = P .  In 2 + r / n  2 + :r2(n 4 - 2 r ) ( a / L ) 2 / 8  1. (6) 

Since the Euler equation for the refined functional differs from equation (3) only in the last term, these two theories 

are easily compared [7]. The system stability characteristic, calculated on the basis of formula (6), is presented in the last 

column of Table 1. For the specimens 2 and 9 we obtain in this model stable postbuckling behavior with respect to the modes 
with 6 and 3, respectively, halfwaves of the sinusoid, in full agreement with experiment. The difference between the 
experimental results for the specimen 6 and the theoretical predictions can be explained by the technical limitations in the tests 

that were due to the loading device. On the whole, we can conclude that the model in which the work of the elastic base is 

taken into account by the expression (5) agrees better with the experimental results. 

In Figs. 4-6 the solid lines represent the semisums of the amplitudes of the extreme halfwaves, and the dashed lines 

represent the semisum of the amplitudes of the neighboring halfwaves of the bar, respectively, for the specimens 1 and 4 (the 

upper row of Table 1 for this specimen) and the specimen 6; on the dashed curves of Figs. 4 and 5 the arrows indicate the 

reverse motions, when unloading of the neighboring segments of the bar took place because of the unstable behavior of the bar- 

base system; the buckling modes are shown at the bottom in each of the Figs. 4-6. As a result of the selection of the stiffness 
of the measuring device 4 (see Fig. 1), it was possible in the experiments to record the unstable postbuckling behavior (the solid 

lines in Figs. 4 and 5) and the indifferent postbuckling behavior (solid line in Fig. 6). 

742 



L 

f w - " / ~ L - - - -  

Fig. 2 

P.kg 
4,62- 'P ~ 4,28- 

z ,~,7- 

~u.~ 0 

Fig. 3 Fig. 4 

I ~ I I I I 
0 0.4 O,d 1,2 1,6 2,0 2,4 

Fig. 5 

o,.mm 

p,kg I 
i ,2  -I ~ x  . . . . .  --x ~ 
, , 0 - I  o ~ x - - - ~  

i I I 
o o,,~ o,a 1, 2 ~,~ 2,0 e ,4  e,a c,, mm 

Fig. 6 

The experimental results confirmed the disruption of the initial periodic buckling mode of the bar with increase of the 

load [1, 2] and demonstrated localization of the buckling near the ends of the bar, the latter showing up particularly clearly 
for buckling with a large number of halfwaves (for example, seven halfwaves for the specimens 3 and 8). Unfortunately, this 

effect is not captured by the theory, since in the elastic base models used in [7] the shearing deformations were not considered; 
as a consequence of refinement of the model of the elastic base there appear variable compressive stresses in the bar, which 

leads to localization of the buckling process in the vicinity of the action of the maximal compressive stresses. It is probably 

fundamentally possible to evaluate experimentally the magnitude of the averaged compressive stresses acting on each halfwave 

length by making special additional measurements. We note that the recorded growth of the amplitudes of the neighboring 
halfwaves (dashed curves in Figs. 4-6) seem to predict stable postbuckling behavior of the system; this is as it should be, since 

the dashed curves correspond to the small initial segments of the solid curves of each of the figures for moderate deflections. 

In the case of repeated loadings of all the specimens, there was obtained on some of the specimens good reproducibility 
of the experimental results with the uncontrollable disturbances, while on the other specimens under the same conditions (see 
the experimental results for the specimens 4, 5, 9 in the Table) there was a reconfiguring of the buckling modes, associated 

with the instability of the realization of the buckling process because of the high density of the spectrum of the critical loads 
(the values of Pi in the table). The longitudinal loads with t-mite deflections of the system also vary significantly, depending 
on the realization of the particular buckling mode. It is advisable not only to monitor the disturbances that arise in the process 
of the experiment but also to use a more exact model, describing the work of the elastic base, to exclude the theoretical 

inaccuracies of the determination of the critical loads. 
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Thus, we were able to demonstrate experimentally the unstable postbuckling behavior of the deformable system 
consisting of a bar plus an elastic base with finite deflections. For a more complete description of the experimental results 
relating to the localization of the buckling process it is necessary to formulate a refined mathematical model of the subject 
system, in which relations of the Vlasov-Leont'ev type [6] are used to describe the work of the elastic base. 
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